Search results for "stoichiometric model"

showing 2 items of 2 documents

Improvement of acetaldehyde production in Zymomonas mobilis by engineering of Its aerobic metabolism

2019

Acetaldehyde is a valuable product of microbial biosynthesis, which can be used by the chemical industry as the entry point for production of various commodity chemicals. In ethanologenic microorganisms, like yeast or the bacterium Zymomonas mobilis, this compound is the immediate metabolic precursor of ethanol. In aerobic cultures of Z. mobilis, it accumulates as a volatile, inhibitory byproduct, due to the withdrawal of reducing equivalents from the alcohol dehydrogenase reaction by respiration. The active respiratory chain of Z. mobilis with its low energy-coupling efficiency is well-suited for regeneration of NAD+ under conditions when acetaldehyde, but not ethanol, is the desired catab…

Microbiology (medical)Cellular respirationlcsh:QR1-502Respiratory chainZymomonas mobilisMicrobiologylcsh:MicrobiologyMetabolic engineering03 medical and health scienceschemistry.chemical_compoundstoichiometric model030304 developmental biologyAlcohol dehydrogenaseOriginal Research2. Zero hunger0303 health sciencesEthanolbiology030306 microbiologyZymomonas mobilisNADH dehydrogenaseAcetaldehydebiology.organism_classificationmetabolomicschemistryBiochemistrybiology.proteinmetabolic engineeringacetaldehyde
researchProduct

Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies

2014

Mathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.

Microbiology (medical)Entner–Doudoroff pathwayComputer scienceSystems biologyCombined uselcsh:QR1-502Metabolic networkMicrobiologyZymomonas mobilislcsh:MicrobiologyMetabolic engineeringstoichiometric modelingbiologybusiness.industryZymomonas mobilissystems biologyMetabolismelementary flux modeskinetic modelingbiology.organism_classificationBiotechnologycentral metabolismPerspective ArticleBiochemical engineeringmetabolic engineeringbusinessFlux (metabolism)Frontiers in Microbiology
researchProduct